Mr. Chairman,

I take this opportunity to congratulate you on your election as Chairman of the Special Political and Decolonization Committee to the 67th General Assembly, as also the members of the Bureau on their election. I assure you of my delegation’s full cooperation and support. I would also like to congratulate former Chairman, the Permanent Representative of Romania, Ambassador Simona-Mirela Miculescu for the way she conducted the work of this committee during the 66th session.

Mr. Chairman,

The Indian delegation notes with appreciation that UNCOPUOS continues to be the unique platform at the global level for international cooperation in space activities, and to utilise outer space for peaceful purposes towards serving the humanity under the mandate of the General Assembly. The Indian delegation expresses its satisfaction over the deliberation of the 55th session of UNCOPUOS under the chairmanship of Mr Yasushi Horikawa of Japan, and the work carried out by the two sub-committees of UNCOPUOS.

Mr. Chairman,
While acknowledging the significant achievements of various member states in space endeavours during the last one year, the Indian delegation desires to brief the Assembly on the significant achievements made by India in the field of space since the last Session.

On October 12, 2011, the Polar Satellite Launch Vehicle (PSLV C-18) precisely placed the Indo-French Joint Satellite “MEGHA-TROPIQUES” and three other auxiliary satellites, JUGNU, SRMSat and VesselSat-1, in their intended orbits. The MEGHA-TROPIQUES satellite is a joint contribution by India and France to the global scientific community engaged in research on climate and weather systems. JUGNU and SRMSat were built by Indian academic institutions, while VesselSat-1 was built by Luxemburg. MEGHA-TROPIQUES will be one of the eight satellites of the Global Precipitation Measurement (GPM) constellation, contributing to the global scientific community’s research to study the dynamics of the climate system.

On April 26, 2012, PSLV C-19, on its twentieth successive successful flight, precisely placed the Radar Imaging Satellite (RISAT-1), India’s indigenously built microwave remote sensing satellite meant for natural resources management, into its intended orbit. RISAT-1 carries a C-band Synthetic Aperture Radar (SAR) payload, operating in multi-polarisation and multi-resolution modes.

On September 09, 2012, PSLV C-21, on its twenty-first successive successful flight, precisely placed the French Earth Observation satellite ‘SPOT-6’ and a Japanese microsatellite ‘PROITERES’, into their intended orbits.

India’s advanced communication satellite, GSAT-10 was successfully launched by Arianespace from Kourou, French Guiana on September 28, 2012. GSAT-10 carries 12 C-band; 6 Extended C-band and 12 Ku-band transponders, and a GPS Aided Geo Augmented Navigation (GAGAN) payload.

Significant progress has been achieved in realising GSLV Mk III, a heavier class launch vehicle, capable of launching 4-ton class communication satellites into a Geostationary Transfer Orbit.

In addition to augmenting the constellation of remote sensing and communication satellites, India is getting ready to launch the first satellite of the Indian Regional Navigation Satellite System (IRNSS), and the first Indian space-based observatory for multi-wavelength observations of the celestial bodies and cosmic sources, named ASTROSAT.

Mr. Chairman,

The Indian space programme continues to integrate advances in space technology and applications with our national developmental goals. India places considerable importance on International Cooperation for peaceful uses of outer
space. Currently, formal instruments of cooperation are in place with 33 countries and three international organisations.

Mr. Chairman,

As part of capacity building in the field of space, India hosts “Center for Space Science and Technology Education in Asia and the Pacific (CSSTEAP)” affiliated to the United Nations, which has so far benifitted more than 1100 scholars from 52 countries.

A meeting of India-ASEAN Heads of Space Agencies was organised in Bangalore in June 2012, with the participation of all the ten member countries of ASEAN. A panel discussion was also organized to discuss the possibilities of space cooperation between ASEAN and India, and challenges in ensuring delivery of the benefits of space technologies to the developmental needs of ASEAN.

In July 2012, India hosted in Mysore the 39th Scientific Assembly of the Committee on Space Research (COSPAR), with the theme “Space - for the benefit of Mankind”, with participation of more than 2000 scientists, researchers and students from 75 countries.

India is an active member of the Committee for Earth Observation Systems (CEOS), and will be hosting the Plenary at Bangalore in October 2012.

Mr. Chairman,

We are proud to mention that India’s Chandrayaan-1 with many international payloads including that from USA, was instrumental in conclusively establishing the presence of water and hydroxyl molecules on the lunar surface. India has performed a unique joint experiment, known as Bi-Static Experiment involving Chandrayaan-1 and NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft on August 21, 2009, for obtaining additional information on the possibility of existence of ice in a permanently shadowed crater near the North Pole of the Moon. Additionally, the analysis of data obtained by the Miniature Synthetic Aperture Radar (Mini-SAR) onboard Chandrayaan-1 spacecraft has provided evidence of the presence of ice deposits near the Moon’s North Pole.

Mr. Chairman,

Indian space programme, aimed at achieving self reliance and developing capability to build and launch communication satellites for television broadcast, telecommunication and meteorological applications, has travelled a long way in achieving these objectives. The Indian Space Research Organization has played a central role in achieving these objectives, successfully operationalizing two major satellite systems namely the Indian National Satellites (INSAT) for communication services and Indian Remote Sensing (IRS) satellites for management of natural
resources; also, Polar Satellite Launch Vehicle (PSLV) for launching IRS type of satellites and Geostationary Satellite Launch Vehicle (GSLV) for launching INSAT type of satellites.

I am proud to mention that the city of Bangalore in Karnataka State, to which I belong, is India’s centre of space activities. With several key programmes and facilities of ISRO, including ANTRIX Corporation Ltd, Satellite Centre, Liquid Propulsion Systems Centre, Telemetry, Tracking and Command Network, Laboratory for Electro-optic Systems, located in the city, Bangalore is India’s aerospace capital in every sense.

Mr. Chairman,

In conclusion, the Indian delegation greatly acknowledges the potential of space technology and the need to maintain outer space for peaceful purposes.

Thank you Mr. Chairman.